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APPROXIMATE EQUATIONS FOR TRANSPORT COEFFICIENTS OF
MULTICOMPONENT MIXTURES OF NEUTRAL GASES

I. Introduction

A description of multicomponent gas mixtures which contains the
effects of fluid dynamics and chemical reactions is necessary for model-
ling many reactive flow systems. A quantitative description of such
systems often must include an accurate treatment of transport phenomena,
in which heat and particles diffuse through the mixture. Our particular
interest in accurately modelling combustion processes has thus led us to
survey and compare existing theories of transport phenomena in mixtures
of neutral gases in order to identify representations which are suitable
for numerical calculations. In this paper, we present the results of our
work on (ordinary) diffusion, viscosity, thermal conductivity, and thermal
diffusion.

To show how these transport processes enter our calculations, we
consider the equations for conservation of mass, particle number, momentum,

and energy, which may be written as follows:

30,7 (pyp =0 (1.1)
3t

3ni -

Je -l (agyy) =T (¥ +Q - Lymy (1.2)
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3E
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Here Y is the fluid velocity and p,p Yor and E are the total mass,

momentum, and energy densities of the gas mixture, respectively. The

sets of variables {ni}, {Qi}’ and {Li} refer respectively to the number
densities of the chemical species (labelled by i) and the rates of
{ production and loss of the species as a result of chemical reactions.

; As we show in Appendix A, the transport coefficients enter the

oY _d

conservation equations through the pressure tensor P, the heat flux
g, and the diffusion velocities {ii}, which represent the average ‘

velocities of the species relative to the fluid velocity, The

!O.
pressure tensor z depends on the scalar pressure P and the viscosity

of the mixture. The variables (§i} and q are functions of (ordinmary)
diffusion, thermal conductivity, and thermal diffusion. In Appendix A,
we consider these relationships in detail.

The remaining sections of this paper present equations for the
transport coefficients which represent the above processes in the
conservation equations. In developing and identifying the formulas
we have attempted to strike a balance between accuracy and computational
simplicity. 1In the accompanying discussions, we have supplemented the
major works on the theory of transport phenomena in gas mixturesl’2 by
citing publications which have extended the theory and by commenting on

the consistency among and limitations of the various formulations. We have 1

also sought to clarify points of confusion arising from differences in |
) _
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methods of approximation and in notation used by various authors.
Because the text will often mention references 1 and 2, we will
use the respective designations "HCB" and "CC"” to identify them for the
reader. We will employ the notation of HCB except when we are dealing
with notational differences among authors and when we discuss vectors
(e.g., V), tensors (e.g., g), and the thermal diffusion coefficients

{D_.}. In references to HCB and CC we cite the equation and page

Ti
numbers, respectively, abbreviating the word "equation(s)" by "eq."
(e.g., HCB,eq. (8.1-1), 516). We will express physical quantities in

CGS units and will write units in parentheses beside the related definitions

and equations.




I1. Basic Formulations of the Theory of Transport Phenomena

Before stating the equations for cransport coefficients in multi-
component gas mixtures, we will outline the approaches of HCB and CC in
deriving the fundamental relations from which our equations originate.
HCB and CC begin with the Boltzmann distribution functions {fi} which

satisfy the Boltzmann equations for the species in the gas mixture:

of of of v
i R O U . Ly o L
e T ) Yo Gyt Tgar Yy f

) (11.1)
z 1 vy

3

(L1 =1, 2,..0.0,V),

where fi is a function of the position vector r (cm), the velocity
vector of the iCh species !i (cm sec-l), and the time t(sec). The
external force on each molecule of species i is §i (dynes); the mass of
a molecule of type i is mi(g); the {J(fi’ fj)} are collision integrals;
and V is the number of species comprising the gas mixture. The authors
assume that the {fi} may be expressed in terms of an infinité perturba-

tion series

2]

« ¢ (O] (1] {
£, o= £, + £, + £, +oeiaen

* i

(1=1, 2,.0000, V)

where the lowest order term is Maxwellian, 1i.e.,

m -m, (v, = )2
ftol'“(zxtr>m exp { 1417 }
i i\ 2= "‘;;;“"

In eq. (II1.3), ni‘is the number density of species 1(cm-3),k is

4

;
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|
i
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Boltzmann's constant (= 1.380662 x 10.]'6 erg °K-1); T is the temperature

(°K); and \_ro(g,t) is the mass average (or fluid) velocity of the gas

mixture given by

v
vy (5,8 = jfl Py Yy (11.4)

In eq. (II.4), p(z,t) is the total mass density of the mixture and is equal

to the sum of the species mass densities {pi}:

v -3
p=1z pi (gm cm )’
i=]

where the individual mass densities [ are given by
o = mym, 1=1,2,000.0,V), (I1.6)

Also in eq. (II.4) we have ;i, the average velocity of species i, defined

by

ii(g,t)- 1 ffi(g,gi,t) v, 4y, (em sec-l) .

ny

Given sufficiently rapid convergence of the series in eq.(IIl.2), we
may use the first two terms to approximate fi; BCB and CC use the following
form:

£, (v ) T 60 @y, 0 04 @0l

(1 =1,2,.....V),




where the function §; is found to be linear in %I, the temsor A"/

and a set of quantities {c_lj}, so that
3 v
- - . . I z g,
By = (&g - T = ge1 Brdag @Wolga * B G 4 (11.9)
(1'1,2.-....,\)).
)
In eq. (II1.9), éi and the set {gi } are vectors, Ei is a second-rank
tensor, and
P P v
- S X -]y . -1
d, = ¥x, + (x; . P Pp[mi X, *El ny !_(j] (ecm ™) (11.10)

(i = 1,2,.....,v)’

where P is the total scalar pressure, X, is the mole fraction of species i given

by

oy
X, == (1I.11)

and n is the total number density equal to

v
n= nj. (11.12)
j=1
The quantities 1_&1, gi(j), and E‘L are all functions of the "peculiar velocity"
‘_Ii, defined by
- -1
v (ryy.,t) = v, =¥y (cmsec 7) (I1.13)
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o, \% (1I.14)
i -1
= —_— v .
W, <2k’l‘) Vs (cm sec )
We then have
A = A (WO, (1I1.15)
Q) . 3
91 Ci (wi) Hi’ and (II.16)
B.e B,(W,) (WW, -=w2U) (11.17)
=4 "1V t=i-i 3L & :
where the unit tensor is
3 1 0 O
U= [ e;e; ™ o 1 O (11.18)
= {i=] 0 0 1
and
we = Wl (11.19)

We must distinguish between the peculiar velocity \_71 in eq. (II.13) and
the "diffusion velocity" ii’ which is the average peculiar velocity of
species i (i.e, the average rate of flow of species i relative to the mass

average velocity of the mixture). Thus we have

V,=v, -9 » (11.20)

A e . meemee e . i B G . iimi o an e e LTI




> am V, = > oy ii =0 (11.21)

From the above formalism, HCB and CC derive the transport

coefficients in terms of integral equations containing fgol and Wi

along with Ai’ Céj), or Bi depending on the particular transport coefficient
being calculated. The approximate solution of these complicated equations

requires two further steps:
(1) Expand the functions Ai’ C;j) and Bi in terms of the Sonine
polynomials {Sém)(x)}, which satisfy a particularly convenient orthogonality

condition(see Appendix B). This gives us the form:3

(3) - G) (m 2
e W) %tm s, (W) (11.22)

3
i

where t

&P
i

is equal to A

13 Bi’ or C

and the number n is, respectively,
3/2, 5/2, or 3/2.

(2) perive (integral) equation34’5 satisfied by the sets {Ai}’

{Bi}’ and {Cij)} and use them in conjunction with (II.22) to solve for

expansion coefficients ti;j). These steps result in approximate equations

for the transport coefficients in terms of a finite set of the

e )
m

i




ll Unfortunately for the reader, HCB and CC calculate the expansion

coefficients ti(j)

o in different ways . To develop an “mtb order" approxi-

mation, HCB initially use expansions consisting of only the m lowest order

Sonine polynomials, solving variationally for the coefficients. CC use

! expansions containing an infinite set of Sonine polynomials and develop
i expressions which may in theory be solved for the infinite set of coef-
ficients. They then cut off the expansions at order m to obtain their

: t
| "m h_ order" approximations for the transport coefficients. These

techniques result in somewhat different equations at each order of
approximation; however, we demonstrate later that, for most purposes, the
differences are not significant.

The approximate equations for the mixture transport coefficients which
are derived by HCB and CC take the form of ratios of determinants of order
2 2 v 4+l and 2-1, respectively, where again v is the number of species in
the mixture. The elements of the determinants are complicated functions
of collision integrals, the evaluation of which would require a significant
amount of computer time. Consequently the expressions derived by HCB and CC
are impractical for use in models of reactive flows. Subsequent work,
however, has produced accurate, semi-empirical equations which are simple to

evaluate. The remaining sections of this paper discuss these equations.




ITI. (Ordinary) Diffusion
A. Binary Mixtures (v=2)
We will use the symbol aij to denote the "ordinary" (or'"concen-
tration") diffusion coefficient of a binary mixture containing
species 1 and j. Marrero and Mason6 have found that, for many '
binary mixtures of dilute gases, the existing experimental data are

sufficiently extensive, consistent, and accurate to permit the

development of a semi-empirical expression which describes the variation
| of t&j over a wide temperature range(300°K < T s 10000°K) and which has

: a standard deviation of 10% or less. Based on the qualitative

1 temperature dependence of the quantity P‘aj’ where P is the pressure,

{ Marrero and Mason used the following form to fit the more accurate and

consistent data:

S 0

(I11.1)

AT
Memp
ij

Q@ '
(n(Z) P e @ e &

where A, s, ¢b, S and S' are empirical constants. The empirical
diffusion coefficient, af?P, is in units of cm2 sec-l, and P is in
units of atmospheres.(One atmosphere equals 1.01325 x 106 dynes cm—z.)
: The terms containing S and S' are the "Sutherland-Reinganum terms', which
| are used to account for the attractive portion of the intermolecular

potential. Marrero and. Mason fit most of the less precise data to the form

10




emp _ ,,
PB A'T (III.2)

s

where A' and s' are empirical constants. The function in eq.(III.2)
is much easier to evaluate and provides sufficient accuracy for reactive
flow calculations. In those cases for which Marrero and Mason have fit

the data to eq.(III.l), we suggest using eq.(III.1) to generate values of

' P‘&;j at various temperatures and then fitting these to eq.(III.2).

i .' For most intermediate or highly reactive species, experimental data
| do not exist over the large range of temperatures required for reactive
flow calculations. We must then rely on a theoretical expression for

E &., which is based on kinetic theory. HCB and CC have derived the

ij
;following equation for [f;j%f the first (or lowest nonzero order)
approximation to jij:7
2 -1 p
0.0026280 (em™ sec 7) (IIL.3)

[ﬁij L=

*

13

1,1)*
poy; oD )

where Mi is the molecular weight of species i, P is the pressure in

YRRy

5 atmospheres, and oij’ often called the collision diameter, is a force

constant in the potential function

' B 1
b = 13
¢ij ij f (rij ) (111.4)

which describes the interactions between molecules of species i and j.
We may describe oij as the value of the spherical coordinate rij at

: which °i is equal to zero. The other constant’eij,equals

3




the depth of the potential well(or the maximum energy of attractiom).

Unfortunately values of o,, and sij are not available in most cases;

ij

so we will use the customary representations.

1
] 2 (oi + oj), (II1.5)

ij

c o -8
measured in A (1A = 10 “cm), and

g = ’
13 &5 (111.6)

measured in ergs. In eq.(III.5) and (III.6), the symbols A ande;i

denote the force constants in eq. (I1I.4) for interactions between molecules

of the same species i. Eq.(III.5) is exact for rigid spherical molecules

while eq.(III.6) follows from the theory of the "London dispersion fotces"s. '

* .

Finally, the collision integral Qij ij)’ is actually a ratiog-

(1,1)

NETE DT ~ 1 (111.7)
1] 2D

ij Rigid Sphere

where the collision integral Qii’l) is related to that defined in CC by
oD 2 oDy, (11I.8)
13 3
a,n* (1,1)
Note that Qij, measures the departure of Qij, from its value in a

model assuming rigid spherical molecules. The collision integral is

a function of a reduced temperature .

12
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T * kT . (II1.9)

To obtain values of ¢ and oij we suggest using the tabulations of

ij

ei and oy given by Svehla10 and HCB11 for interactions described by the

Lennard-Jones potential,

o o
, 1,12 i.6
¢ (r) = 4y &) - (I11.10)
LJ

12 2,8)*"
HCB also provide a table of collision integrals Q for small
values of £ and s. Table III-1 compares values for {éj calculated from
the semiempirical formulas of Marrero and Mason with those calculated from

eq (III.3-1%). At low temperatures the agreement is quite good; however,

the disparity increases with temperature. As in the case of eq. (III.1),

_ we may transform eq.(III.3) to the form of eq.(III.2) by using eq.(III.3)

to generate values of RDi at various temperatures and then fitting these

]
values to eq.(III.2).

Based on the assumption of rigid spherical molecules, Cheung et al.l3
and Mason and Saxena14 have derived an approximate equation for.Dij for

mixtures of nonpolar gases:

(o}

iy 1 My oy Ao My
s— = — (1+) T+ (T
Y M Y
M
1 1+ _1)-‘5 1+ (—n-i)L’ (%‘);‘]2 (I11.11)
Y " " 1
* P

13
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1 1

sec °K.]') is the coefficient of thermal

In eq. (III.11), Ag (erg cm

conductivity calculated for a gas consisting only of species i at the
same pressure and temperature as the mixture being studied ('1‘i = Tmix’
Pi = Pmix) and with the internal degrees of freedom "frozen". The

last condition means that species i is treated as a monatomic gas

when determining A; (Section V). Similarly, n, (gm — sec'l)

is the coefficient of viscosity of a gas consisting of only species
1 at the same temperature and pressure as the mixture being studied
(Section IV). The quantity dgii is the coefficient of "self-diffusion”,

for which we can use the Fitst approximacion,l5

3

0 1. = 0:0026280 I (ca® sec”)y, (1I1.12)
11°1 20(1,1)%. M
PO QT i

where all quantities are defined as in the case of eq. (III.3) and we

have substituted ¢, and T: for 0,, and T:i, respectively. In eq. (IV.10)

i ii
we also present a semi-empirical expression for ﬂii' Table III-2
compares experimental values °f°521 with those calculated from eq.

(I11.12). Again the agreement is gquite good.

15
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Cheung 55_31,12 have shown that the ”11 calculated frop eq.(III.1l) using

experimentally determined viscosity coefficients agrees quite well with the

ratioJDiiAD calculated from eqs.(III.3) and (III.12) using a Lennard-Jones

13

potential. Discrepencies will, however, arise because the derivation of eq.

(I11I.11) relies on the assumption of rigid sperical molecules.

B. Multicomponent Mixtures (v > 2) ;
The calculation of diffusion coefficienfé (denoted Dij as opposed to

&Hj) for mixtures of more than two species requires the evaluation of

17,18

determinants of order v and the associated minors. For more than four

species, the calculation of the set {Dij} could become expensive; fortunately,
both HCB and CC have derived expressions relﬁting ordinary diffusion to other
transport properties in terms of 553531 the first approximation to the binary
diffusion coefficient given in eq.(III1.3). We mention that, while Lxﬁjll is 1
the same in the formulations of HCB and CC, the first approximation to Dij

(denoted [Dij%) is not. We infer this from the fact that 19

ccC .
[Dij ) z [Dij N (1II1.13) |

while eq.(III.13) does not hold in the case of HCB.17 Thus we have

o, 3B 4 (o, ¢c (111.14)




MR aiie

T
b -

a situation which we also find for coefficients of thermal diffusion (Section

F vi).

F From a practical point of view, the above disagreement between the

4 .
{ theoretical formulations may not be too significant. Marrero and Mason6 _

point out that the major difference between Dij 8nd'£§j lies in the dependence

g of Dij on the relative amounts of all species rather than just species i and
i j as in the case of<£§j. Because the experimental uncertainties in measurements
" of D:Lj and &i i are often of the same order of magnitude as the variationms in

composition, Marrero and Mason suggest that

emp _ emp
| Dyy = Py (11I1.15)

where "emp" signifies empirically determined quantities.
i C. Summary
From the above discussions, we find that good experimental data and simple
empirical formulas exist for binary diffusion coefficients of many species. For
those which are not adequately covered by measurements, we may use either eq.
j (I11.3)or the combination of eqs. (III.1ll) and (IIT.12). Because HCB and CC have
counstructed the equations describing diffusion and other transport phenomena
in terms of the binary diffusion coefficients, we need not calculate the

multicomponent coefficients of diffusion, which are defined differently by
HCB and CC.

18
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IV. Viscosity

A. Pure Gas

For a pure gas (i.e., one which contains only one species), we may

calculate the coefficient of viscosity, nNys by using the expression20

266.93 x 10° ¥ 4T

(nh,], = ( m-l ec-l) (Iv.1l)
14 2 (2'2)"(1’;) gem s

i Qii
where [ni]1§enotes the first (i.e., lowest nonzero order) approximation to

n In eq. (IV.1), Q (2,27 is a ratio of collision integrals9 defined by

i° i1
o 8,30
2) % i
[“11 1 i

Rigid -Sphere

where the collision integral Qiiz’z) is related to that defined in CC by

Q (2,2) - 9(2)(2). : (Iv.3)

HCB21 have compared experimental viscosity data with values calculated from
eq.(IV.1) and eq. (II1.10) for several species over a temperature range of

80 -~ 1500°K and have found deviations of less that 5% in all cases. For

sufficiently restricted temperature ranges we might simplify the calculations by
substituting a constant for Qiﬁz’z)? which is a slowly varying function of

*
reduced temperature T . As we showed in eq. (III.1ll), [ni]1 and [Aill are

closely related; we will show this relationship explicitly in Section V.




B. Multicomponent Mixtures (v £ 2)

For mixtures of two or more gases, we may express the first approximation
to the coefficient of viscosity, [nmile’ as a ratio of determinants of order
v+1 and v, respectively, in which the elements are complicated functions of
collision int:egrals.z2 Of more use in reactive flow calculations is an

alternate expression derived by expanding the determinants and discarding the

. e

off-diagonal elements. This results in the functional form23
¢ | v 2
: X
~ i
= (a1 5 2 v
3 i=] xi 2: RT
b + a_ X
a [ngdy * g o e TG,
i k¥i
!
(IV.4)
1 v
i = z [nill ,
‘ i=]
v
X L+4q E"ijl RT 2 xk
i o X PM

1 k=l [
k¥l

where [nill is the first approximation to the coefficient of viscosity of
a gas containing only species i at the temperature and pressure of the

mixture being studied, ao is an empirical constant, and R is the "molar gas

constant” given by

\ - -
R = Nk = 8.31441 x 10 ' erg mol™> %k (1V.5)
with Avogadro's number given by

V= 6.022045 x 1023 g1t (Iv.6)

20




}‘l We may also express eq. (IV.4) in terms of 01, the density (g cm-s) of a H
gas containing only species i at the temperature and pressurs of the mixture, i

iAi by using the ideal gas law:

i PV = 1,RT. (1Iv.7)
l

Here T is the number of moles of a gas containing only species i at the same y

temperature and pressure as the mixture (and not the number of moles of species

i in the mixture). We then obtain

i . (n ]

]
1 {=1 L+ aocnijl ) . (Iv.8)

mix

oy X
1 %1 k=l (@)
k#i

-

We point out again that pi is not the density of species i in the mixture;

rather p; is tie density corresponding to Ti in eq. (IV.7). Using a

heuristic treatment, Buddenberg and Wilkeza obtained eq. (IV.8) with

n

mix and ni substituted for [nmix]

1and [ni]1 and evaluated a to be approximately
1.385 by comparing (IV.8) with available viscosity data for binary mix-

tures. Table IV-l shows that we can calculate values of L which are

in excellent agreement with experimental data for mixtures of two, three,

and four components by using eq. (IV.8) with ao = 1,385 and experimental

values of p;_and ni' The dependence of eq. (IV.8) on binary diffusion

coefficients, for which data are often unavailable, can make calculations

of mixture viscosities more difficult and less accurate. Wilkezs, there-

fore, developed the following equation for [nmix]1

in terms of the quan-

tities (@ik}, defined by eq. (III.1l):
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Table IV~-1°

‘ Comparison of Theoretical and Experimental Values of
' Viscosity Coefficients of Gas Mixtures at 298°K and 1 Atmosphere

! Gas Mole nmix(E erimental)zs’ Moix goretical)
Mixture Fractions 107% cm—? sec -1 EC sec”
|
N,=0, 0.1864-0.3136 200.8 197.4 242
0.7822-0.2178 184.3 180.6 24-2 .
H,=CO 0.1927-0.8073 171.7 171.9 24,2
0.6947-0.3053 144.9 149.¢6 4.3
He-Ar 0.3405-0. 6595 227.8 227.0 24.3
0.7565-0.2435 227.0 227.8 24,2
Ne-H,-CO, |0.333-0.333-0.333 185.7 195.3 243 199, 25:°
Ne-H,-C0, |0.25-0.25-0.25-0.25 168.1 162.3 248 159.3 230
~CCL,F,
* After Buddenberg and Wilke. 24
a. From eq. (IV.8) of this paper.
b. From eq. (IV.9) of this paper. .
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> k!
{=1 ¥ X )
Z x, gik

[

kml

Using eq. (III.1ll1), (IV.8), and (IV.9) we may derive a simple approximate

formula fot‘J&i, the coefficient of self diffusion:

(1v.10)

~ Ny
&, = 1.38 — °
ii pi

Table IV-1 shows that eq. (IV.9), when used with experimental values of ny
will give excellent agreement with experimental data for mixtures of up to
four components. We also note that eq. (IV.9) has some advantages over

eq. (TV.8) because ¢,, depends only on the molecular weights and the viscosities
ik

of the individual components. By eq. (IV.l), we have

2 (2,2)* *
Lz (ML)% %l (IV.11)
e M oF 2% '
ii (’Ti)
and from eq. (III.1l) and eq.(IV.1ll), we obtain
-3 * %
M C g Qéz’Z)(T ) 572
~ 1 i k k k
ﬂik ~ 1+ = 1+ . ———r—(z 3] * (Iv.12)
2/ 2 : i szu’ (Ti)




Depending on the species in the mixture and the size of the reduced temp-

erature range of interest (T*, T;), we might simplify eq. IV. 12 by
replacing

(2\2)* * 55

™ (T,)
Zeg S NER L (IV.13)
g (Ti)

with its average over (T:, T;). For models involving a large range of
reduced temperatures, accurate calculations will require the use of a
Table of 9(2’2)* values vs. T* or an accurate fit of a convenient func-
tional form to the tabulated values.
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V. Thermal Conductivity

The expression for the coefficient of thermal conductivity for a
mixture of reacting gases, Amix’ is often quite complex, as we indicate in
Appendices A, D, and E. Depending on the speeds of the reactions and on
the lifetimes of the excited states of each molecule, we may express

A . as follows:
mix

A - )0 + Xinc + ) comp

mix mix mix mix ° (v.1)

In eq.(V.1l), X;ix (sometimes called the "translatiomal thermal
conductivity”) is a function of the set {Az  1=1,2,...,v} of thermal
conductivities of the individual species, each treated as monatomic.

The second term, A;:;, accounts for the transport of internal energy

by molecules in different quantum states, and the last term, k:z:p,
describes heat conduction resulting from changes in the composition of
the mixture through chemical reactions. We must point out, however, that

the heat flux resulting from changes in chemical composition of the mixture

may be represented as

comp _ _ ,comp
q Kmix YT v.2)

only if the steady state chemical composition is very nearly in equilibrium

with the local temperature T. Because this depends on the reaction rates

in the forward and reverse directions, the term k;izp in eq.(V.1-2) is

not always applicable. We have, therefore, derived the following general

expression for g O {n Appendix D:




N

. A

v
comp =
q 151?! x, ¥ <d>, (v.3)

where 70 is the number of moles in the gas mixture and <H > is the
experimentally determined emthalpy per mole of gas species i. We may
now restate eq.(V.l) as

0 int
mix mix mix ° (v.4)

0 int
In the remaining sections, we will discuss Amix and Amix in detail.

A. Pure Gas

For a gas consisting of only one species, we first comsider x;,
which is calculated assuming that the gas is monatomic or that the

internal degrees of freedom are frozen. HCB27 give the following expression

for the first approximation, [Ai]l :

3
2 1 - - -
[(2%], = 8.322 X 12 + ( %— )% (erg cm L sec™t %k l). (v.5)
i’l 02 Q(2,2) Th di
i 7ii i

Bv eq.(IV.1l) and eq.(V.5), we find that [ni]1 and [A;]l are clsoely related, i.e.

-9 0
[“1]1 3.208 X 10 Mi“ill‘ (V.6)

For polyatomic molecules, of course, the internal degrees of freedom
are not frozen, and the diffusion of molecules of species i in different
quantum states will transport energy through the gas. We may represent this

process approximately by using the Eucken fac:or,27 Ei’ with eq.(V.5) as

follows :




) int )
li Xi + li = Ai Ei . .7
28-31 .
Hirschefelder has derived the following equation for Ei from the

kinetic theory of gases (Appendix E):

c
E, = 0.115 + 0.354 —l%i— (v.8)
Yy
= 0.115 + 0.354 ,
vi-l

where cpi is the constant pressure molar specific heat for molecular

species 1,

[

v, ==, (v.9)
vi

and i is the constant volume molar specific heat for m§lecular species
i.

Hirschfelder assumed the following in order to derive eq.(V.8):
(1) The gas exists in a steady state.
(2) The composition of the gas (i.e., population of the various quantum
levels) is in equilibrium with the local temperature. Only when this
assumption holds will the heat conductivity be independent of boundary
conditions, permitting us to express the heat flux due to internal

degrees of freedom as

gi"t - -aift op (V.10)
1f, for example, an appreciable fraction of the molecules were to exist

27




in metastable states, the population of states would not be a function
temperature only. Eq. (V.10) would then be incorrect and kint would not
provide a meaningful representation of polyatomic effects.

(3) The coefficients of diffusion for all quantum states with a noanegli-
gible population are approximately the same. This is usually the case,
except when excited electronic states are appreciably populated. Such states

have collision diameters o: which are on the order of 302, where o is

the label of the quantum state and o = 0 signifies the ground state. The large
values of ¢© for excited electronic states result in much smaller diffusion
coefficients, which vary as (ou)-z, than for the ground electronic state,

and consequently the Eucken factor would predict a A, which is larger than

i
the experimental data would indicate.

(4) Nonadiabatic collisions do not appreciably distort the molecular
distribution functions {f: (r, !i, t) | « = 0,1,2,....} for the various
quantum species a. This holds in the case of electronic and vibrational
states. However, at "low'" temperatures, where rotational transitions become
important in collisional energy transfer, rather large distortions do occur
in the distribution functions, leading to anomalously small experimental
values of Ai. For nonpolar molecules, "low temperature" means ~470°K,

while for polar molecules, "low temperature' signifies room temperature.
Fortunately the Eucken factor works well at higher temperatures which

are of interest in reactive flow problems, because the distortions due to

rotational transitions are less important.

Apoendix E shows how these assumptions are used to derive Ei' Subsequent

work32.34 has accounted for the affects of the inelastic collisions

mencioned above and has resulted in an Eucken type factor which involves




only measurable quantities plus the relaxation time associated with the
transfer of energy due rotational transitions in collisions. CC35

indicate that these results are highly model dependent and are currently
impractical for application to reactive flow calculatioms.

B. Multicomponent Mixtures (v = 2)

HCB36 derive [l:ixll’ the first approximation to xmix for monatomic
gases, in terms of a ratio of determinants of orders 2v + 1 and 2v,
respectively, plus a term involving thermal diffusion and ordinary diffusion ,
coefficients. Subsequent work37-4l has led to a simpler equation ,
involving only a ratio of determinants of order v + 1 and v, respectively.

As we indicated in Section II, the "first approximation”, [lomix] differs

l!

from author to author because different methods of approximation have been

used, Mason37 used Kihara's method,42 in which derivatives with respect to

temperature of a particular set of functions of collision integrals ﬂi?’s)
39

are discarded. Muckenfuss and Curtiss™  used the variational equations of HCB,

and CC41 used truncation of an infinite series expansion to develop a set

0

of v coupled equations for [A I (i)ll’ where
0 v () ]
[Amix]l = 131 (A [ (i)]l’ (v.11)

We show in Appendix C that the equations of CC lead to a ratio of

determinants of orders v + 1 and v, respectively, with elements that differ

only slightly from those of Mason37 and Muckenfuss and Curtiss.39

Unfortunately the above formulas depend on functions of collision integrals

which are nonlinear functions of temperature.
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Subsequently Mason et 31.14,43

have found that the off-diagonal
elements of the determinants could be neglected and that the portion of the
diagonal elements which contains the collision integrals could be replaced

by an empirical constant. The derivation then parallels Wilke's25 treatment

of the mixture coefficient of viscosity and results in the following

semi-empirical formula:

1 o] v ki

nmix]l N S . (v.12)
! 1=1 l1+= 1t X, G

1 gap ¥ 1K
l khi
{
where
Gik = 1.065 ﬂik . (V.13)

The factor 1.065 is the value of the empirical comstant mentioned above

]
mix

[nmix]l in eq. (IV.9). Table V-1 shows that, for mixtures of rare gases

and is the only difference in functional form between [A ]l and

(Ne-Ar-Kr and He-Ar-Xe), we can obtain excellent agreement with
experimental data by using eq.(V.12,13) in conjunction with empirical values

of Ai. Similar agreement exists for binary mixtures.l4

We must now consider the correction Aiii due to the internal degrees of

freedom of polyatomic molecules. Hirschfelder30 has derived the fo.lowing

equation:
Q
Jgor TN : (V.14)
e Py &
YY) &g
1 ey © ik
k¥l

30
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where A\, is given approximately by eq.(V.7) and eq.(V.8) and is the

i
experimentally determined coefficient of thermal conductivity of a gas

consisting only of species i. By using eq.(III.1ll) in eq. (V.14), we

obtain
o
Joae o o MM (V.15) 1
= 1=l 1+: 3 9 |
17 |
X, Ly 'k ik i
k#i

Comparing eq.(V.12), eq.(V.13), and eq.(V.15S), we see that only the small
difference between Gik and Qik prevents us from combining them in a simple

manner. Mason,la in fact, substituted Gik for gik in eq.(V.1l5) to obtain

v

A
A =00 ] PRPE S LIPS » i . (V.16)
nix mix'l ¥ ‘mix v
BB R -
X, kel ik
kéi

Table V-1 shows that eq. (V.1l6), when used with experimentally determined

13,53,54

values of A\, and Xi, is quite accurate. Several authors have used

i
heuristic arguments rather than the rigorous kinetic theory of gases to

derive similar equatious.
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VI. Thermal Diffusion

The equations for the transport coefficients related to thermal
diffusion are more complex and confusing than those discussed in previous
sections for the following reasomns:

(1) Thermal diffusion is a '"second-order" effect, and to evaluate the

coefficient of thermal diffusion for species i, denoted D T accurately,

T
we require a Sonine polynomial expansion with more terms than for other
transport coefficients.

(2) The coefficients of thermal diffusion are more sensitive to the
composition of a gas mixture than are the coefficients representing
other transport phenomena.

(3) Because of (1) and (2) above, experiments and theoretical studies
have often emphasized binary mixtures, thus impairing our ability to
verify the accuracy of formulas for multicomponent mixtures in general.
DTi’ kTi
(thermal diffusion factor). Authors

(4) Three quantities often appear in theoretical work--
(thermal diffusion ratio), and aij
differ on the definition of DTi and sometimes (e.g., HCB) fail to show
explicitly how the three are related for multicomponent mixtures with

v > 2. CC are also inconsistent in their definitions of kti for v =2
and v > 2.

(5) Some of the most authoritative papers on the subject also involve
the most complex mathematics and notation, requiring a significant

effort for most readers to gain a working knowledge of the equatioms.

In this section we deal with the above problems in additiom to

providing a set of useful equations for thermal diffusion coefficients




of multicomponent mixtures. While we use and compare information

derived from several sources, we prefer CC because the relationships
among {DTi’

reason, we use the notation of CC in this section, rather than the

kTi’ aij} are stated most clearly and completely. For this

notation of HCB.
A. Thermal Diffusion Coefficients {D. }

The product on&n T and DT:L’ the thermal diffusion coefficient
for species i in a multicomponent mixture, appears in eq. (A.3) of
Appendix A for the diffusion velocity i;. Upon reviewing the litera~-
ture,33-58 we find that CC, HCB, and Waldman (W) all definme D
differently. Because we will be more interested in the thermal
diffusion ratio, kTi’ which is identical in all three formulatioms,
this subsection will only explore the relationships among DgiB, °¥1’
and Dgi rather than giving expressions for evaluating them in terms
of properties of a given gas mixture. In the next subsection, we will
show how they are related to the set {kTi}.

The equations defining the set {DTi} in the three formulationms

are as follows:

- cc ..
cc: ¥, = - j-zl Aij% - Di; YiaT (VI.la)
— 2 Vv HCB
n HCB 1 -
. - - = DY ViaT
HCB: V, = "o I my Dy dy - Dy Len (VI.1b)
i¥ j=1 i
= VoW W
W: !i = - jfl Dij gl_j - Dnz;,n T. (VI.c)
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; i Eq. (VI.la-c) show explicitly the relationships of the respective

DTi to the diffusion velocity and multicomponent diffusion coefficients.
;jA We readily see that the associated units are cm? sec'l(Dgg), g cm~!

; sec'l(Dgga), and cm? sec‘l(Dgi). The first term of eq. (VI.lb) differs

in sign from those of eq. (VI.la,c) because the related term in

ijg, Y t) as defined by HCB (see eq. (II.9)) differs in sign from

the corresponding term in the other formulations. The quantity Aij is

{ | a "'generalized diffusion coefficient"” and is not equal to DCC

1

multicomponent diffusion coefficient in the formulation of CC,6as we

, the

show in Appendix F. Waldmann defines his diffusion velocity i;, as
the velocity of species i relative to the average particle velocity of

the mixture,

(TS |

X, V., (V1.2)

v L4
- 11

rather than the mass average velocity go; so we have

H !i - !o (VI.3)

A

This is the primary distinction between the formulations of CC and
Waldmann.3?
For counsistency with eq. (II.21), which coanstrains the diffusion

velocities in the formulations of CC and HCB, and with the equatiom

v

< -

X =0 (V1.4)
mp +71

35




JUTE U,

in the treatment of Waldmann, the respective authors have defined

constraint equations for the sets {DT }e

1
M cc

CC: = p, D2 =0 (VI.5a)
fop 10T
Y _HCB

HCB: Dp” =0 (VI.5b)
; i
i=]
o W

W o - (VI.5¢)
£:l xi DTi 0.

From eq. (VI.1l) and (VI.5), we infer that the values of DTi given by

the three formulations are related by

DCC HCB W

Py Dpg = Dpy = %y Dpy (V1.6)

This will be of use to us in Section VI.B and Appendix F. For complete-

ness, we also list the constraints on the multicomponent diffusion

coefficients:

\Y v

CC: Z oAy = 2 p A, =0 (VI.7a)
j‘lj ij i=] i iJ

HCB: D‘i‘? =0 (VI.7b)
v \Y)

Ww: = x, D", == x, D' =o0. (VI.7c)
j=1 34 & 4l

From eq. (VI.7a=-c), we see that the ordinary diffusion coefficients
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for multicomponent mixtures are quite different. Fortunately, as we
have pointed out in Section III, HCB and CC have derived expressions
for the transport coefficients and diffusion velocities in terms of
the binary diffusion coefficients Lpij]l, which are equal in the two
treatments.

A general equation for [DTill,the first approximation to the
thermal diffusion coefficient for species i, appears in HCB.®0 1In the

next section, we will show how D,,. may be obtained from the thermal

Ti
diffusion ratios {kTi}‘

B. Thermal Diffusion Ratios {kTi} and Thermal Diffusion Factors {oij}
Most data from experimental studies of thermal diffusion are

presented in terms of the thermal diffusion ratios {kTi}’ which are

unitless. We may understand this emphasis on kTi by considering eq.

(A.4) of Appendix A,

vV XX, -
d, +k,,VinT=- & == v, -V.). (A.4)
£ T %y sm1 iJ.]1

Usually measurements take place after the gas mixture has reached
equilibrium and under conditions in which pressure gradients and
external forces are negligible. Eq. (A.4) then becomes

Tx, +k, VnT=0, (V1.8)

i

and kTi therefore indicates the changes in equilibrium concentration




P

of species i caused by a temperature gradient in the sample. Because
kTi is so closely related to experimental measurements, we expect that,
unlike the situation for the thermal diffusion coefficients {DTi}’ the
treatments of CC, HCB, and Waldmann should provide values of kTi
which are very close or identical. As an example, we show in
Appendix F that kTi is identical in the treatments of binary mixtures
given by CC and HCB.

To define the thermal diffusion ratios formally, both CC®! and

Waldmann57>58 yse the same type of equation, i.e.,

cc
DTi = ;:1 Aij ij (VI.9)
and
W e W
DTi = f:i Dij kTJ . (VI.10)

respectively. Notice that by using eq. (VI.6) with either eq. (VI.9)
or eq. (VI.10), we may calculate the thermal diffusion coefficients
in any of the formulations given values for (kTi} and a set of
diffusion coefficients. Because the thermal diffusion coefficients

are related by eq. (VI.5), we require the auxilliary condition,62

7[4<
~
M
o

(VI.11)

to define the set {kTi} unambiguously. The thermal diffusion factors
{“1j} are defined in terms of the thermal diffusion ratios by the set

of equations57,58,63
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kTi = f: xixjaij (=1, 2, +++, V) (VI.12)
=]

with the auxilliary conditions

aij = - aji . (VI.13)

CC41»6% have developed the following useful equation for the
first approximation to the thermal diffusion ratic of species i,
[kTi]l’ which is based on the assumption that the gases in the mix-

ture are monatomic (or that the internal degrees of freedom are

frozen):

- . (VI.14)

The quantity cij is the ratio of collision integrals appearing in

eq. (C.10) of Appendix C and a, is the contribution of the ith

i

species to the mixture thermal conductivity [A°

mixll' In Appendix C,

we show that

= L 2 Ao
4 : [*mix(i)ll - i " . (C.1-2)
1
1+2 G
xi k=1 xk ik
kel

CC argue that the internal degrees of freedom of the gas molecules

have a smaller effect on kTi than on A Monchick, et al.§5 add

mix’

39
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the condi:ion that the mass and size differences among the species
should not both be small. Otherwise, inelastic effects due to non-
spherical interactions (e.g., rotational relaxation) must be taken

into account. An example of a mixture for which internal degrees of
freedom may not be ignored is the DZ-HT system, an "isotopic" mixture,
in which both molecular species are approximately the same in mass

and size. For suck mixtures, Monchick, et al., have derived the correc-

tions to [k, due to the internal degrees of freedom of the molecules.

Ti]l
We may convert eq. (VI.1l4) to a more useful form by using

1+¢ -%c*, (C.10)

the ideal gas law,

P = nkT, (VI.15)

and the relationship between {mi} and {Mi} s

mi Mi
——— - (4, =1, 2, *=+, V). (C.9)
mi +mj Mi +Mj

We then obtain

x,x MM /s a

\Y) a
S G e b L —-1-'—’-)

(knel, = ————
Ti'1 ja1 nk[cﬂ'ij]l Mi + Mj ijj xiMi
(VI.16)
. g: ‘x uij(6C!.*LL- 5) ( aj a, )
s 174 Sknwijll x,M

&




MiM'

-—td
1y M VN

u (V1.17)

This is the same form of equation derived by Monchick, et al.,5%

for [kTi]l; however, their equation for a, includes effects related to
internal degrees of freedom and is more complicated from a computational
standpoint. Monchick, et al., point out that their result reduces to
that of CC for mixtures of monatomic gases. The presence of C¥

i3
is of order unity, increases the complexity of eq. (VI.16). If the

,» which

* &
reduced temperature range of interest (TA, TB) is small enough, we
might simplify our calculations by substituting the average value of

» %* * * *
C,, over (T, TB) for cij(T ) in eq.(VI.16) :

ij
*
* TB
Cos > 7 Ja c (T) at . (VI.18)
3 'I'B T, T,

For large temperature variations, accurate calculations will require
the use of a table of C:j values vs. T* or an accurate fit of a
convenient functional form to the tabulated values.

While eq. (VI.15-16) should give an adequate representation of

thermal diffusion for reactive flow calculations, we should point outé7
that past calculations of kT for binary mixtures have not agreed as
closely with experimental values as have similar calculations of the
other transport coefficients. Thus the reader may require higher-order

approximations for other applicatioms.
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C. Additional Remarks

OQur study has shown that current literature on the theory of thermal
diffusion is not uniform in the definition of thermal diffusion coeffi-
cients and that treatments of multicomponent mixtures are quite complex.
To produce the above discussion of the topic, we have, therefore,
often been forced to put together fragmentary information coming from
several sources, and our arguments have often been heuristic rather than
: rigorous. Where possible, we have tested the consistency of the various
| formulations, and as indicated in Sections A and B and Appendix F, we

have found them to be in agreement.

AP ¢ AT v A s AR re s en e e

Two theoretical treatments which we have not mentioned are mean-
free-path theories®872 and the phenomenological approach of van de Ree,
et al., based on the thermodynamics of irreversible processes.’ =%

The mean~-free-path theories are only qualitatively useful because of
the difficulty in computing accurate mean-free-paths related to

"number density transfer" and "mean thermal speed transfer.'" The
formulas derived by van de Ree, et al., are equivalent to the treatment
of Monchick, et al.,®3:66in the case of binary mixtures; these equations

might thus be of use in detailed studies of thermal diffusion.




VII. Summary of Equations

For ease of reference we summarize the theoretical equations of
major interest in evaluating transport properties of multicomponent

mixtures of neutral gases.

the body of the report on

of Symbols".

A. (Ordinary) Diffusion

1. Self~Diffusion

The definitions of the symbols appear in

the pages identified in Section VIII "List
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2. Multicomponent Mixtures (Vv > 2)
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VIII. List of Symbols

The following is an alphabetic list of symbols with the number of

the page on which each symbol is defined:

(a) éi’ 6 Ai, 7 A, 10 A, 11 ay 20 aij’ 39
*
ai, 39 a, 28 ai, 58 Aij’ 63 Aij’ 65
*
(b) B» 6 By, 7 By,» 63 BJy» 65
(1 (1)
(c) 91 , 6 Ci s 7 cc 3 cpi, 27 €y 27
*
Cyy 39 Cfy» 40
emp
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Appendix A. Transport Properties and the Conservation Equations

Below we summarize and discuss the equations for conservation of mass,
particle number, momentum, and energy of multicomponent gas mixtureg under
the assumption that external forces and radiation processes are neglibible.
These equations fgrm the basis for models of reactive flows, and we
shall see that the transport phenomena enter the calculations through the
conservation equations for particle number, momentum and energy. For
detailed derivations, we refer the reader to the treatments of Williams75

and Landau and Lifshitz.76

The "contin&ity equation' which represents conservation of total mass, is
] . = Al
t +v (on) 0 (A.1)

The transport coefficients do not appear in Eq. (A.l) because the related
transport phenomena do not directly affect the conmservation of total mass.
However, transport phenomena will affect the conservation equations for
mass and particle number of each species i treated separately, since the
velocity ii may differ from the fluld velocity v, We may express the

conservation of particle number for speciles i as

on
3¢ -1 (g F) Q- Ly

(A.2)

- - . - . + - ,
- (y) -2 (aF)+Q - L,




where Qi and Li refer to chemical production and loss processes for species i.

77

In the formulation of HCB, the diffusion velocities {i;} are directly

related to the coefficients of ordinary diffusionm, {D??B}, and thermal

diffusion, {Dggn},by the equation

2 v
= _ 0% HCB 1 __ HCB
V==X mn D d -——0D " YT (A.3)
' 8 n;p j=1 J 13 3 n.m, Ti

We have used the superscript "HCB" because other authors define these
coefficients differently; Section VI shows the equations of CC and Waldmann

which correspond to (A.3). We may also calculate {V.} from the set of v-1

—~i
independent equations78
vV X X
mT e 1§ -F¥
gi+kn vintT P cC (!,i !j) (A.4)
=1 Di
3
vV X X
=- T oy @ -5
j=1 M3y =3

plus Eq. (II1.10), which defines gi, and Eq. (IIL.21),

\4
Z and =
o) ¥, = 0. (11.21)

We discuss kTi’ the thermal diffusion ratio of species i, in Section VI.B.
Eq. (A.4) makes use of the fact that each multicomponent diffusion coefficient
in the formulation of CC, Digq is approximately equal to Lﬂ;j]l, the first
approximation to the binary diffusion coefficienc.aij. We have discussed

this in Section III.
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The equation for conservation of momentum in the absence of external

forces is

v ) =- T (v yv) - - L (a.5)

In Eq. (A.5), the pressure tensor is

E=PU+T, (A.6)

|
where ] is the unit tensor and !

=g ve + @)+ G TCIRINY P

3 'mix - Kmix - —0'= (A-?)

In Eq. (A.7), Moix is the coefficient of viscosity of the mixture, ( )T is

the transpose operation, and « " is the "bulk viscosity" coefficient. The

mi
bulk viscosity is closely related to relaxation effects between transla-
tional motion and the internal degrees of freedom of the molecules and is
equal to zero for mixtures of monatomic gases. Williams75 indicates that
mix is usually negligible for combustion processes.

The equation for conservation of energy is

E--v ) -7 D-T-g 4.8)

where E is the energy density and q is the heat flux. The equation defining

energy density is
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Cane

. .
E = 2 PVs + ¢, (A.9)

in which ¢ is the internal energy per unit volume. The heat flux, g,

is given by30’79
Y a=a .o . kT & angB = =
a=- 2 T+ S ZaGY, wj+E T 5 Ej[T] T-T).  (4.10)
i=l a i=1 j=1 "i"™ij-1

In Eq. (A.10), A;ix is the thermal conductivity of the gas mixture when we

ignore the transfer of energy between translational and internal degrees
of freedom of the molecules and the effects of chemical‘reactions. The

second term includes the transport of emergy by excited quantum states ai

of gas i and also accounts for the transport of heat resulting from changes
in chemical composition with temperature. This term is thus directly
related to the molecular internal degrees of freedom and to chemical reactions.

We have suppressed the index i of a, for brevity and have used M to denote

i

total number of moles in the mixture per unit volume. We also point out that

Eq. (A.10) treats each quantum state a, as a separate species; thus E: is the

i

diffusion velocity of component i in state a, and H:

The last term in Eq. (A.10) represents the

is the enthalpy per mole
of gas 1 in the quantum state a.
"Defour effect' and may be restated in terms of the diffusion ratios {kTi}
(see eq. (A.13)).

Appendix D shows how we may separate the second term in Eq. (A.10) into

two parts--one which depends on the quantum states {ai} of each component i

and the other which depends on the average enthalpy per mole of each component i:
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: - .int comp
Lnd Term - 2 tg

(A.11)
v (s TG } v kv
= . L G, H + L Mx.V CH D).
=1 a O T - T

The quantity Qg is the molar flux of component i in quantum state ags and

<H1> is the enthalpy per mole of component i, averaged over the quantum
states {ai}. Thus <Hi> is the molar enthalpy which we would expect to
obtain experimentally for a mixture in equilibrium. Under the conditions

listed in Section V.A of this paper, g}nt of Eq. (A.1ll) becomes
i

gt -5 5 oy a:-uxi‘; VT (A.12)
i=l a n
where A;:; then represents a correction to the thermal conductivity of the
gas mixture. We derive a useful equation for Ai:; in Section V.B.

The term gFomp in Eq. (A.l1ll) represents the transport of heat caused

by changes in chemical composition with temperature, and under some condi-

30,80 mp

we may transform gFo comp

mix

tions include chemical equilibrium at the local temperature T, which does

tions, to a term -A VT. Because these condi-

not hold in general, and because the form of S?omp in Eq. (A.1l1l) is con-
venient for calculations, we do not attempt to derive A:;:p in this paper.

By comparing terms in the derivations of gq given by HCle and CCSZ,

we find that the Defour effect may be represented by
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el SRR i

v v v n,D
P O k., V =% % _J?_.(v - V). (A.13)
e e o L 7 LF T S

We may also derive (A.13) by using Eq. (A.4) and Eq. (VI.5) in Eq. (18.31,6)

of CC.82 With Eq. (A.11-13) the heat flux becomes

Y \Y)
a=- 02 + x:‘i‘;)y_r * TR I(HD>+ P T ke, T, (A.14)
i=1 1=1
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Appendix B. Sonine Polynomials

Here we use the notation of HCB, defining the Sonine

polynomials by the equation

@ n Dd@m)! o (B.1)
5o O NG () @)yl

with the orthogonality condition:

-

.[xn e X s® () 5 ®ix) gx « EW3g
0 n n

m! mn' (8.2)

If we substitute Wiz for x, and use n = 3/2, 5/2, eq. (B.2) gives us
i

2 KT
0] (@ 2 o2 et (8.3)
]fi 83/2 (Wi ) Vi d ‘Li - 5m0
0 i .
and
[0] . (m 2, o 4 . kT2 o
{fi Ssp WV AY, lsni(“‘i) S0 (B.4)
() (m)
When we expand A, and C; in terms of the set {s "} and B, in terms of
3/2

{85/2} and then substitute these expansions into the integral equations for the

transport coefficients, we obtain expressions of the form of eq. (B.3) and
(B.4) respectively. For this reason, the Sonine polynomials constitute a
convenient choice for calculating approximate values for the transport

coefficients.
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Appendix C. First Approximations to Aomi

> 4

In this appendix we compare the values of [Xzix]
39 41

1 derived by Masonm,

37

Muckenfuss and Curtiss, and CC ~; we do so to insure that we can derive

eq.(V.12) starting with any of these "first approximations'" and to

indicate how the derivation proceeds. From this we shall see that, in

eq.(V.11),

[o]
o li
mix()l1 = L v - (.1
l+= 7 G
%, T Cik
k#i

(A

The importance of eq. (C.l) is that we have a simple method of

)
calculating the quantities [Amix(i)]l’ which we need in order to compute

approximate values of the thermal diffusion ratios (Section VI).

First we must develop equations for [x:ixll from the formulation of
41 '

CC™~ which appear in the same form as those of Mason37 and Muckenfuss

and Curtiss.39. In the notation of CC, we have

3= Doyl (€.2)
which are solutions to the set of coupled linear equationms,

Vv -
ai Lii + jgl aj Lij - xi (i.l,z,....,\)), (C.3)
h] 2
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where

2 2

. T -

T S :k bmy + G-4By) m zsmimkAik

11 0], kel 520, 1) (m, +m)

ki

L‘ o xiTmim1 11-43ij - 8Aii , (C.4)
13 5P00..] 2
1#5 1j°1 (mi + mj)

And Aij and Bij are ratios of collision integrals defined by CC. Next

we solve eq.(C.3) by applying Cramer's rule to obtain

column
- » 1 »
Lll le e o o o xl e e+ o s Ll\) g
Lzl L22 - L] L] - xz L Ll . . L] sz
L, L. x L
az - vl “v2 ) vV , (C.5)

|t |
where |[L | is the determinant of the matrix with elements {L;j}. We

now multiply the ith columns of the numerator and the denominator,

h

respectively, by -4x, for each i = 1,2,...,v and factor 4 from the lt
i

column of the numerator to obtain




Y

daisits

e =4 Lyp Lyy « - -

*F1lv
AV

AY

2

(C.6)

where ILI is the determinant of the matrix with elements {Lif given by

2
4xi Vv 4Txixk

- 2
(11 4Bik)mi + SmimkAik

L, * -7 -
R CA PR T

1528

and
m,m

+m,)

Ly =35 1111("’1j

i#j

X.X,
-2 1 (11 - 4B

j - 8Ai

(m, +m)c

).

c.”

By eq. (V.1l), eq. (C.2), eq. (C.6) and eq. (C.7), we then have

Lig byp - -
Ly, Lyy - v -

Lvl Lv2 e
[}‘o ]CC xl xz.....

.le X
Lo, X

mix'l = 4
L

(C.8)

where the notation [ ] CC fdentifies the formulation as that of CC.

Eq. (C.8) is in the same form as the corresponding equations of

Mason and of Muckenfuss and Curtiss:“

however. To compare the respective sets ¢

relations in eq. (C.7):

64

Lyys

the elements {L

} differ,

we use the following




st My
e = M+ (i,j = l, 2’000000 sV ) (C.9)
i3] i3
and 84, 85
ACC . 2 ,*HCB 3€C . 3 g* HCB
1j 5 %13 ij 5 i3

cCC-1953  _ | ., Cc-1970 % ¢ *HCB

ij 1] 13 (C.10)

The quantity cij is another ratio of collision integrals which we
encounter in Section VI, and the notations CC-1953 and CC-197Q
differentiate between the second and third editions of CC. We then

have, from the formulation of CC,

2 ___ 2
e S B 1"k (T -3 0M » rwat)
-— 5
i1 %1, ~ 258 mi (M, #)
s i NS - R UL (€.11)
ij 251)&;)ij L (Mi j) 4 1ij ij ‘
i#]
The corresponding equations derived by Mason37 are
2 5,2 ,5,,2 *
L oa_x  _er i R T R I S
- o
11 hgl; 7258 & @], M, + %)
k¥d
and (C.12)
N U e T i BN
13 T 25P wij 1 (Mi+Mj)2 Ay
i#3
14, 39
and the matrix elements of Muckenfuss and Curtiss * are
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2 13 2 4232 2%
L, = ":1 167 v F% (TOM YTM i 3“}@3 +AM M A 1k
DT, 7 2% 0y W) g+ )
ki
and (.13)
L, « 361 —::1- i {55 3B - 4}
252 @ (u A2 13 i3f
i#j 1 l

Notice that the only differences among the three sets of results occur
in the bracketed portions concerning the integrals A* and B*; in fact,
Lij(i#j) is the same in eq. (C.1ll) and eq. (C.13). To derive the

., approximate expression in eq. (V.12) according to the method of Mason
and Saxena,14 we would set Lij(i#j) = 0 in eq. (C.11-13). We would then
represent the portioms of Lii containing Mi’ M, Aik’ and B by an
empirical constant. Since the remaining portions of eq. (C.11-13)

are identi;al, all three formulations will lead to the same semi-
empirical equation.

Using the above procedure on eq. (C.5), we can see that eq. (C.2)

gives

X
. i
nix(s) )1 ~ i (C.18)

(A

Continuing with the treatment of Mason and Saxena,la the reader can
confirm that eq. (C.l) is correct. As we indicated previously, this is
important in calculating the coefficient of thermal diffusion, since we

have a simple method of evaluating [A° ]1, which appears in the

mix (1)
approximate expression, eq. (VI.14).
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Appendix D. Decoupling the Effects of Molecular Internal Degrees of
Freedom and Chemical Reactions in the Heat Flux Equation

In Hirschfelder's treatment of the thermal conductivity of a multi-~
component gas mixture3o (see Section V), he has discussed the heat fluxes
g?nt and g?°mp, the equations for which depend on the molecular intermal
degrees of freedom and the chemical composition of the mixture, respectively.
In doing so, however, he did not show how to decouple the terms representing
these effects in eq. (A.10) for the total heat flux g. Instead he assumed
that eq. (A.11) had already been derived and, therefore, that he could
consider each factor independently. Below we show how to derive eq. (A.ll)

o
¢ and gF ™ in a manner conmsistent with

by defining the heat fluxes g}n
Hirschfelder's discussion. In Appendix E, we demonstrate that our expres-
sions forgmt and SFomp do in fact decouple heat transport caused by changes
in the population of quantum states and the chemical composition with tem-
perature, and we show that Hirschfelder's discussions are rigorously valid

for chemically reactive mixtures of polyatomic molécules.

Our derivation begins with Eq. (A-10) for the total heat flux g, which

gives us
Y a .0
P ] <
q Amix vT +EI,;, & Hi (D.1)

in the absence of thermal diffusion. 1In Eq. (D.1),

3 a Ho




is the number of moles of component i in quantum state a, which are moving

i
in 1 sec through a 1l cm? surface which is perpendicular to the velocity

V., and 1

v, { 1s the enthalpy per mole of component i in quantum state

4
i The quantity E: is the diffusion velocity of component i in quantum state
given by

o lia_ Y (D.3)

Ul

1 and x{’is the mole fraction of component i in quantum state @, given by

(D.4)

Q
’lHPQ

with .

Vv
anz 2 2 %
ot i (D.5)

We have left the index i off oy in all equations for brevity. Notice also
that these and many subsequent equations are restatements of those in Section
II assuming that each combination (i, ai) is a separate component of the

mixture. Thus we have for the fluid velocity Y the relation

A"
v* x=2— £ ZohF, .6)
>z ‘_":,‘nimi i=l a -
1=1 a

which gives us the equation
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n:mi?;_ =0 (D.7)

[ )
L]
-

for the diffusion velocities. Since the number of moles per unit volume 7z

is related to n by

N - (D.8)

z s

where N is Avogadro's number, Eq. (D.7) also represents a constraint on

the molar fluxes {gia}, i.e.,

v v
s G v a v )
L2 n,m Vo= 2 T, MV
i=1 a i 144 i=1 a i i-—
(D.9)
v
=2(_/8(!M.09
i=l a =L i

where Mi is the molecular weight of component i.

In order to derive Eq. (A.1ll) from Eq. (A.10), we define _qint and

gcomp by the equation

a- A, UT = 't 4 g% (D.10)
along with the equations
int _ A TR . 1
q =Y T S Hi’ (D.11)
i=] o 1




q > T g, (0.12)
i=l a
and
a0 a o a
31 - Ei . (D.13)
Next we define the molar flux
a _;m. 0
6; = =] ¥, (D.14)

wheteﬁ is given by

|

B (D.15)

'1_4

v B 1 ]
- -L Zam

i i »p ) ii
the average 7elocity of component i in quantum state o relative to the mass

average velocity of component i. From Eq. (I1I.6) and Eq. (D.1l5), we obtain

. -
7 -y -<y, (.16)
where
(gpd o fyf (0.17)
i 8

with the notation { ) signifying an average over the quantum states of

‘4
species i. We note that, in equations (D.15) and (D.17), we have used

a = Do (D.18)
i 8 i

and




Ot 1 eI << e AT,

i B |

From Eq. (D.14)-(D.18), we obtain

TE =0,
a

which is the condition used by Hirschfelder30 to derive Ai:; for a

nonreacting gas mixture in a steady state. Thus Eq. (D.1ll) will give the

same formula for A;Q; in the more general case of a reactive gas mixture.
Now we must show that our definition of gFomp in (D.12) is compatible

with Hirschfelder's derivation of the heat flux resulting from changes in

chemical composition with temperature. From Eq. (D.2), (D.3), (D.1l3), and

(D.16), we have
g, =Gy - v - (5 - <3P )1 =A< - v)
From Eq. (D.6 ) and (D.17), we see that

v —
1%31 n; m({yp=-v)) = 0.

Further the total molar flux of species 1 in a reference frame moving at

the velocity E; is given by

50T e DD DTy n)




From Eq. (II.20) and the accompanying discussion of diffusion velocities .

!1 , we also have
1
g "=, T, (D.24) 3
;. ; Thus from Eq. (D.22)-(D.24), we obtain
E ' a
B v, =<3p-v_ (D.25)
( and
{ - i
| £ 5L .26

Using Eq. (D.26) in Eq. (D.12), we find that

COIIIP 121 E ﬂ Ei
=1 Q
(D.27)

v
= Z v, @),
P S 1/

' where as in Eq. (D.17), we have defined ¢ Hi) as the enthalpy per mole

averaged over the quantum states Gy

1 a .0
H,) == Zx H. (D.28)
1) x, Z%h

We interpret <Hi> as the enthalpy which is measured experimentally; thus

Hirschfelder's assumption that the gas is in equilibrium at the local
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temperature T is necessary if we use tabulated values of the enthalpy in
our models.

Hirschfelder30 used an equation identical in form to Eq. (D.27) to
discuss the effect of changes in chemical composition with temperature upon the F
thermal conductivity of a gas mixture; again, however, his treatment contains the
implicit assumption that the terms associated with molecular internal
degrees of freedom will not affect the results. In Appendix E, we outline
Hirschfelder's discussion and using the equations which we have developed

in this appendix, we show that the above assumption is correct.
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Appendix E. Derivation of A: and A;omp

ix ix

Below we outline Hirschfelder's derivation of Aint and A°°"P from
mix mix
mp

int ,» respectively. In our discussion, we will use the more

q and ﬂso
general framework of Appendix D to demonstrate the validity of his treat-
ment. As an example, we will then investigate in detail the case of a gas
with only one chemical species.

To simplify our discussion and to parallel Hirschfelder's derivacion,30
we will assume that a temperature gradient exists only along the z-axis, that
no heterogeneous reactions take place (i.e., that the bounding erfaces are

chemically inert and have no catalytic activity), and that the system has

reached a steady state. The last assumption means that

on

for each species i, and eq. (A.2) becomes

)
52 (ni[vo+Vi]) Q1 - Lini' (E.2)
Following Hirschfelder, we transform to a local reference frame in which .

the fluid velocity v, is zero. We may then expresseq. (E.2) in the form

331

= R (&-3)




where Ri is the net number of moles of component i formed per mﬁ per

second. Substituting eq. (D.23) into eq. (E.3), we have

%y

3 oz (E.4)

a

and we see that only the part of the molar flux which is associated with
ssomp in eq. (D.12) is related to chemical reactions, as we would expect.

To transform eq. (D.11) and (D.12) to expressions of the form
9= - A%,

we assume that thermal and pressure diffusion, radiation processes, and

external forces are negligible. Under these conditions, eq. (A.4) becomes

a B B a
xg gi - xj 81

ij

in which we distinguish between molecules in different quantum states.

We have suppressed the notation [ in representing the first approxi-

l

mation to-‘??, the binary diffusion coefficient for component i in state

@y and component j in state 8 We may now separate the effects of internal

j‘
degrees of freedom from those of chemical reactions by substituting Eq. (D.13)

into Eq. (E.6) to obtain




N e G ki s e e e S Ry R v

. - -l . - f.~.. -
int comp
dx® [ ax® x>
dz dz z *
where a int a 8 8
dx \V x, G, -x, ¢ .
i : D i 3 . (E.8)
dz - ~ aB ‘
18 %e
b
and comp
dxi v xz 3;8 - xg gia
= = 2 X (E.9)

In Eq. (E.8) and (E.9), we have again suppressed the dependence of @, and Bj

on i and j, respectively. Summing Eq. (E.8) over a,, and referring to

i

Eq. (D.20), we see that

2 a5 =0 ' (E.10)

so that the gradient in chemical composition is given by

o] comP
dx, dx,
5 - % re . (E.11)

Eq. (E.11) demonstrates the natural decoupling of the effects of internal
degrees of freedom and chemical reactions which the framework of Appendix D

permits. Performing the sum over a, in Eq. (E.1ll) and noting Eq. (D.23), we

i
find that
AY
dx X,8, - X.8
'&;i. E L’{Tj_i (1 =1, 2, *°°, V), (E.12)
i=1 13

76




where we have dropped the dependence of the binary diffusion coefficients

iand ijollowing Hirschfelder's assumption.30 (We have

': < discussed the assumption that ﬂezg is independent of a and Bj in Section V.A.)

on quantum states O

R
¥
b
i

#
g
¥
i

1f we further assume chemical equilibrium at the local temperature T,

Eq. (E.3) becomes

‘ Ri(xl’ x2’ ey x\)’ T, P) = 0, (E.13)

from which we may obtain a set {xie(T,P)} describing the equilibrium compo-
sition of the system. Hirschfelder30 indicates that these will provide a
first approximation to the actual composition. We may then solve Eq. (E.12)

for the set {gi} to c>bt:ain30

v dx
- . | %% < HCB ie | dT
8ie [p 4o 1 SR ED (B.14)

where D};J(.:B is a multicomponent diffusion coefficient (formulation of HCB) !

and the subscript "e" indicates that we have substituted the set {xie(T’P)}

into our solution. From Eq. (D.24) and (D.27), we see that

comp _ _ ,comp dT
‘aix dz (E.13)
‘ where
: 2 VV dx
comp _ RS « HCB ie
Amix =5 i:ijz-lbij Mj <H:L> ar " (E.16)
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‘ For further discussion of Eq. (E.16), we refer the reader to Hirschfelder30
.1

: and Butler and Brokaw80

} We now return to Eq. (E.8) to derive an equation analogous to Eq. (E.3)
: and (E.15) for the thermal conductivity related to internal degrees of freedom.
)

Performing the sum over 8 and using Eq. (D.4), (D.18), and (D.20), we obtain
l_

a int
‘ dxi of *5 v X,
- - =~G + 2 =) (E.16)
= dz 1060, o

3#i

in which we have again assumed that the binary diffusion coefficients-ﬂi? are
i

approximately the same for all a, and Bj. If each component i is in

equilibrium at the local temperature T, the mole fractions xi are functions

of local temperature and pressure, and we have
o int a int
S5l L |3 a (E.17)
dz dT dz ° )

We may now use Eq. (E.16) and (E.17) in Eq. (D.1l1l) to obtain

int int 4T
in which int
[dxi]
o
Amix = Z, X. v % . (E-lg)
i=] b § + E j
LT TR
j#i
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t for the case of

To complete the discussion, we will now compute Ain

a gas consisting only of component i, From Eq. (E.19), and the fact that

1 i=j
X, = (E.20)
J 0 i# ]
we have
a
dx
int <« i,a
AT ﬂ“gii‘: aT By (E.21)
By Eq. (D.28), we know that
= a4 a
S: & g By (E.22)
and the molar specific heat at constant pressure for the gas i is
d(H, ) d o} dx}
C oo 2 SV R0 + o __ .
pi T TaT ~ % 4T % 8 3T (E.23)

The first term is the "translational" contribution to the heat capacity

and equals 53/230. Thus we find that

int 3
o MB ey - T R) (E.24)
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and the total thermal conductivity for species i becomes

- 30 3
A=A +'~”‘aii(°pi 5 R). (E.25)
Defining Gfi by the equation
R NG
5§ = — 1
fi 2A; (E.26)
we obtain
M 2 ©pi
xz =] - sfi +'§ 6fi R Z E.(Sfi). (E.27)

Using detailed calculations with the Buckingham and Lennard-Jones potentials,

Hirschfelder29 has calculated

dfi = (0.885. (E.28)

This gives us the value of Ei shown in Eq. (V.8).
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Appendix F. Demonstration that kTi = kTi for Binary Mixtures

In this appendix, we use the formulation of kinetic theory given
by CC to calculate kgg for a binary gas mixture, and we compare the
result to the expression for kggB. We do this to demonstrate the

following: that (a) different formulations will give values of kTi

which are equal, (b) Aij and Di? are not equal, and (c) eq. (VI.§)
cC _HCB W
DTi , and DTI is valid. We calculate Aij in terms of

‘gid, which is equal to Dij for binary gas mixtures, from the equa:ion18

} relating DTi’

‘ A Iy (F.1)
' - ij Y :
where
2
*1 %1%y .
i 12 1
xlx2 x22

(F.2)

L [); "2

Ol 02

x,x
and Yij is the cofactor of;z;—i in Q. From eq. (F.1-2) and the equality
ij
ofﬂij and&ji, we obtain
2
°2

A = 3 (F.3)
11 x22 2 X

2.0 *1%2 2 -
2, 18, % D

and




_ = P1P)
- 20.p -p - po A
172 1 19 2
l 12 22 A1
- 19
f W CC also state the condition
l
vV x
= =0, (F.5)
: j=1%1j
' which gives us
, X X
1 - ZL = 2 and %9 x1 xl (F.6)
| u P D doy P )

By eq. (VI.9) and eq. (VI.1ll), we have

cc ce cc _ .cC
Dpp = 831 Ky + 815 kpp =k (815 - 4))) (F.7)
Using eq. (II.5),
p = pl + pzp (F-B)

and the above equations, we find that

dp kCC

2
cc P2 +%Pf2 o cc %12 *m1 ®2

DTl X, X le X, X0 (F.9)
| 172 2 172
;ZT"‘°1*°2)
12
We note that eq. (II.6) and eq. (VI.6) give us
ey - n,m, Py = n,3,, (11.6)




and

cc _ HCB
Py D7y = Dy (VI.6)

Substituting these equations into eq. (F.9), we obtain

c
JHCB ’“912 fp 2%

1 5 (F.10)

Solving for kgg and comparing this with the corresponding equar.iones

for kg:n’ we find that

HCB

D e
cC Tl HCB
= =k . (F.11)
2
le 12 n mlmz Tl
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